Error reduction and convergence for an adaptive mixed finite element method
نویسندگان
چکیده
An adaptive mixed finite element method (AMFEM) is designed to guarantee an error reduction, also known as saturation property: after each refinement step, the error for the fine mesh is strictly smaller than the error for the coarse mesh up to oscillation terms. This error reduction property is established here for the Raviart–Thomas finite element method with a reduction factor ρ < 1 uniformly for the L2 norm of the flux errors. Our result allows for linear convergence of a proper adaptive mixed finite element algorithm with respect to the number of refinement levels. The adaptive algorithm surprisingly does not require any particular mesh design, unlike the conforming finite element method. The new arguments are a discrete local efficiency and a quasi-orthogonality estimate. The proof does not rely on duality or on regularity.
منابع مشابه
Error Reduction, Convergence and Optimality for Adaptive Mixed Finite Element Methods for Diffusion Equations
Error reduction, convergence and optimality are analyzed for adaptive mixed finite element methods (AMFEM) for diffusion equations without marking the oscillation of data. Firstly, the quasi-error, i.e. the sum of the stress variable error and the scaled error estimator, is shown to reduce with a fixed factor between two successive adaptive loops, up to an oscillation. Secondly, the convergence...
متن کاملComparison of different numerical methods for calculating stress intensity factors in analysis of fractured structures
In this research, an efficient Galerkin Finite Volume Method (GFVM) along with the h–refinement adaptive process and post–processing error estimation analysis is presented for fracture analysis. The adaptive strategy is used to produce more accurate solution with the least computational cost. To investigate the accuracy and efficiency of the developed model, the GFVM is compared with two versio...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملAn Adaptive Least-Squares Mixed Finite Element Method for Fourth Order Parabolic Problems
A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approximate. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori...
متن کاملConvergence and Optimality of Adaptive Methods in the Finite Element Exterior Calculus Framework
Finite Element Exterior Calculus (FEEC) was developed by Arnold, Falk, Winther and others over the last decade to exploit the observation that mixed variational problems can be posed on a Hilbert Complex, and Galerkin-type mixed methods can then be obtained by solving finite-dimensional subcomplex problems. Stability and consistency of the resulting methods then follow directly from the framewo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 75 شماره
صفحات -
تاریخ انتشار 2006